Printed from https://www.webqc.org

Ajuste de ecuaciones quí­micas - Ajuste Online


Ecuación Ajustada:
5 K2000C1000O3000 + 5 Na2000C1000O3000 + 10 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 180 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 190 C1000O2000
Estequiometría de la ReacciónReactivo Limitante
CompuestoCoeficientePeso MolecularMolesMasa
K2000C1000O30005138205.50
Na2000C1000O30005105988.44
Nb2000O500010265809.76
Ba1000C1000O3000162197335.90
Sr1000C1000O300018147628.90
Ti1000O200018079865.80
K50Na50Ba810Sr90Nb100Ti900O3000200222594.21
C1000O200019044009.50
Unidades: Peso Molecular - g/mol, Peso - g.

Equilibrio paso a paso mediante el método de inspección.
Equilibremos esta ecuación usando el método de inspección.
Primero, establecemos todos los coeficientes en 1:
1 K2000C1000O3000 + 1 Na2000C1000O3000 + 1 Nb2000O5000 + 1 Ba1000C1000O3000 + 1 Sr1000C1000O3000 + 1 Ti1000O2000 = 1 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

Para cada elemento, comprobamos si el número de átomos está equilibrado en ambos lados de la ecuación.
K no está equilibrado: 2000 átomos en reactivos y 50 átomos en productos.
Para equilibrar K en ambos lados hacemos:
Multiplicar el coeficiente de K50Na50Ba810Sr90Nb100Ti900O3000 por 40
1 K2000C1000O3000 + 1 Na2000C1000O3000 + 1 Nb2000O5000 + 1 Ba1000C1000O3000 + 1 Sr1000C1000O3000 + 1 Ti1000O2000 = 40 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

Na está equilibrado: 2000 átomos en reactivos y 2000 átomos en productos.
Nb no está equilibrado: 2000 átomos en reactivos y 4000 átomos en productos.
Para equilibrar Nb en ambos lados hacemos:
Multiplicar el coeficiente de Nb2000O5000 por 2
1 K2000C1000O3000 + 1 Na2000C1000O3000 + 2 Nb2000O5000 + 1 Ba1000C1000O3000 + 1 Sr1000C1000O3000 + 1 Ti1000O2000 = 40 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

Ba no está equilibrado: 1000 átomos en reactivos y 32400 átomos en productos.
Para equilibrar Ba en ambos lados hacemos:
Multiplicar el coeficiente de Ba1000C1000O3000 por 162
Multiplicar el coeficiente de K50Na50Ba810Sr90Nb100Ti900O3000 por 5
1 K2000C1000O3000 + 1 Na2000C1000O3000 + 2 Nb2000O5000 + 162 Ba1000C1000O3000 + 1 Sr1000C1000O3000 + 1 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

Sr no está equilibrado: 1000 átomos en reactivos y 18000 átomos en productos.
Para equilibrar Sr en ambos lados hacemos:
Multiplicar el coeficiente de Sr1000C1000O3000 por 18
1 K2000C1000O3000 + 1 Na2000C1000O3000 + 2 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 1 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

Ti no está equilibrado: 1000 átomos en reactivos y 180000 átomos en productos.
Para equilibrar Ti en ambos lados hacemos:
Multiplicar el coeficiente de Ti1000O2000 por 180
1 K2000C1000O3000 + 1 Na2000C1000O3000 + 2 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 180 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

K no está equilibrado: 2000 átomos en reactivos y 10000 átomos en productos.
Para equilibrar K en ambos lados hacemos:
Multiplicar el coeficiente de K2000C1000O3000 por 5
5 K2000C1000O3000 + 1 Na2000C1000O3000 + 2 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 180 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

Na no está equilibrado: 2000 átomos en reactivos y 10000 átomos en productos.
Para equilibrar Na en ambos lados hacemos:
Multiplicar el coeficiente de Na2000C1000O3000 por 5
5 K2000C1000O3000 + 5 Na2000C1000O3000 + 2 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 180 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

Nb no está equilibrado: 4000 átomos en reactivos y 20000 átomos en productos.
Para equilibrar Nb en ambos lados hacemos:
Multiplicar el coeficiente de Nb2000O5000 por 5
5 K2000C1000O3000 + 5 Na2000C1000O3000 + 10 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 180 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 1 C1000O2000

C no está equilibrado: 190000 átomos en reactivos y 1000 átomos en productos.
Para equilibrar C en ambos lados hacemos:
Multiplicar el coeficiente de C1000O2000 por 190
5 K2000C1000O3000 + 5 Na2000C1000O3000 + 10 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 180 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 190 C1000O2000

O está equilibrado: 980000 átomos en reactivos y 980000 átomos en productos.
Ahora todos los átomos están equilibrados y toda la ecuación está completamente equilibrada:
5 K2000C1000O3000 + 5 Na2000C1000O3000 + 10 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 180 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 190 C1000O2000

Equilibrio paso a paso mediante el método algebraico
Equilibremos esta ecuación usando el método algebraico.
Primero, asignamos todos los coeficientes a las variables a, b, c, d, ...
a K2000C1000O3000 + b Na2000C1000O3000 + c Nb2000O5000 + d Ba1000C1000O3000 + e Sr1000C1000O3000 + f Ti1000O2000 = g K50Na50Ba810Sr90Nb100Ti900O3000 + h C1000O2000

Ahora escribimos ecuaciones algebraicas para equilibrar cada átomo:
K: a * 2000 = g * 50
C: a * 1000 + b * 1000 + d * 1000 + e * 1000 = h * 1000
O: a * 3000 + b * 3000 + c * 5000 + d * 3000 + e * 3000 + f * 2000 = g * 3000 + h * 2000
Na: b * 2000 = g * 50
Nb: c * 2000 = g * 100
Ba: d * 1000 = g * 810
Sr: e * 1000 = g * 90
Ti: f * 1000 = g * 900

Ahora asignamos a=1 y resolvemos el sistema de ecuaciones de álgebra lineal:
a * 2000 = g * 50
a000 + b000 + d000 + e000 = h000
a * 3000 + b * 3000 + c * 5000 + d * 3000 + e * 3000 + f * 2000 = g * 3000 + h * 2000
b * 2000 = g * 50
c * 2000 = g00
d000 = g * 810
e000 = g * 90
f000 = g * 900
a = 1

Resolviendo este sistema de álgebra lineal llegamos a:
a = 1
b = 1
c = 2
d = 32.4
e = 3.6
f = 36
g = 40
h = 38

Para llegar a coeficientes enteros multiplicamos todas las variables por 5
a = 5
b = 5
c = 10
d = 162
e = 18
f = 180
g = 200
h = 190

Ahora sustituimos las variables en las ecuaciones originales con los valores obtenidos al resolver el sistema de álgebra lineal y llegamos a la ecuación completamente balanceada:
5 K2000C1000O3000 + 5 Na2000C1000O3000 + 10 Nb2000O5000 + 162 Ba1000C1000O3000 + 18 Sr1000C1000O3000 + 180 Ti1000O2000 = 200 K50Na50Ba810Sr90Nb100Ti900O3000 + 190 C1000O2000

Enlace directo a esta ecuación ajustada:

¡Ayúdanos hablando de este software químico a tus amigos!

Instrucciones sobre equilibrio de ecuaciones químicas:

  • Escribe una ecuación de una reacción química y pulsa el botón Ajustar. La respuesta aparecerá abajo.
  • Utiliza siempre las mayúsculas para la primera letra del nombre del elemento y las minúsculas para el segundo caracter del mismo. Ejemplos: Fe {3 } I {-} = {Fe 2 } I2
  • Sustituye grupos inmutables en los compuestos químicos para evitar la ambigüedad. Por ejemplo, la ecuación C6H5C2H5 O2 = C6H5OH CO2 H2O no será equilibrado.

Ejemplos de ecuaciones químicas completas para el ajuste:

Ejemplos de las ecuaciones químicas reactivos (una ecuación completa se sugiere):

Comprender las ecuaciones químicas

Una ecuación química representa una reacción química. Muestra los reactivos (sustancias que inician una reacción) y los productos (sustancias formadas por la reacción). Por ejemplo, en la reacción del hidrógeno (H₂) con el oxígeno (O₂) para formar agua (H₂O), la ecuación química es:

Sin embargo, esta ecuación no está equilibrada porque la cantidad de átomos de cada elemento no es la misma en ambos lados de la ecuación. Una ecuación balanceada obedece a la Ley de Conservación de la Masa, que establece que la materia ni se crea ni se destruye en una reacción química.

Equilibrio con inspección o método de prueba y error.

Este es el método más sencillo. Implica mirar la ecuación y ajustar los coeficientes para obtener el mismo número de cada tipo de átomo en ambos lados de la ecuación.

Ideal para: ecuaciones simples con una pequeña cantidad de átomos.

Proceso: Comienza con la molécula más compleja o la que tiene más elementos, y ajusta los coeficientes de los reactivos y productos hasta equilibrar la ecuación.

Ejemplo:H2 + O2 = H2O
  1. Cuente el número de átomos de H y O en ambos lados. Hay 2 átomos de H a la izquierda y 2 átomos de H a la derecha. Hay 2 átomos de O a la izquierda y 1 átomo de O a la derecha.
  2. Equilibre los átomos de oxígeno colocando un coeficiente de 2 delante del H 2 O:
  3. Ahora, hay 4 átomos de H en el lado derecho, así que ajustamos el lado izquierdo para que coincida:
  4. Consulta el saldo. Ahora, ambos lados tienen 4 átomos de H y 2 átomos de O. La ecuación está balanceada.

Equilibrio con método algebraico

Este método utiliza ecuaciones algebraicas para encontrar los coeficientes correctos. El coeficiente de cada molécula está representado por una variable (como x, y, z) y se establecen una serie de ecuaciones basadas en el número de cada tipo de átomo.

Ideal para: Ecuaciones que son más complejas y que no se equilibran fácilmente mediante inspección.

Proceso: Asigne variables a cada coeficiente, escriba ecuaciones para cada elemento y luego resuelva el sistema de ecuaciones para encontrar los valores de las variables.

Ejemplo: C2H6 + O2 = CO2 + H2O
  1. Asignar variables a coeficientes:
  2. Escriba ecuaciones basadas en la conservación del átomo:
    • 2 a = c
    • 6 a = 2 d
    • 2 b = 2c + d
  3. Asigna uno de los coeficientes a 1 y resuelve el sistema.
    • a = 1
    • c = 2 a = 2
    • d = 6 a / 2 = 3
    • b = (2 c + d) / 2 = (2 * 2 + 3) / 2 = 3.5
  4. Adjust coefficient to make sure all of them are integers. b = 3.5 so we need to multiply all coefficient by 2 to arrive at the balanced equation with integer coefficients:

Equilibrio con el método del número de oxidación.

Útil para reacciones redox, este método implica equilibrar la ecuación en función del cambio en los números de oxidación.

Ideal para: reacciones redox donde se produce la transferencia de electrones.

Proceso: identificar los números de oxidación, determinar los cambios de estado de oxidación, equilibrar los átomos que cambian de estado de oxidación y luego equilibrar los átomos y cargas restantes.

Ejemplo: Ca + P = Ca3P2
  1. Asigne números de oxidación:
    • El calcio (Ca) tiene un número de oxidación de 0 en su forma elemental.
    • El fósforo (P) también tiene un número de oxidación de 0 en su forma elemental.
    • En Ca 3 P 2 , el calcio tiene un número de oxidación de +2 y el fósforo tiene un número de oxidación de -3.
  2. Identifique los cambios en los números de oxidación:
    • El calcio pasa de 0 a +2, perdiendo 2 electrones (oxidación).
    • El fósforo pasa de 0 a -3, ganando 3 electrones (reducción).
  3. Equilibra los cambios usando electrones: Multiply the number of calcium atoms by 3 and the number of phosphorus atoms by 2.
  4. Escribe la ecuación balanceada:

Equilibrio con el método de media reacción ion-electrón

Este método separa la reacción en dos medias reacciones: una de oxidación y otra de reducción. Cada media reacción se equilibra por separado y luego se combina.

Ideal para: reacciones redox complejas, especialmente en soluciones ácidas o básicas.

Proceso: divida la reacción en dos medias reacciones, equilibre los átomos y las cargas en cada media reacción y luego combine las medias reacciones, asegurándose de que los electrones estén equilibrados.

Ejemplo: Cu + HNO3 = Cu(NO3)2 + NO2 + H2O
  1. Anota y equilibra las medias reacciones:
  2. Combinar medias reacciones para equilibrar los electrones. Para lograrlo multiplicamos la segunda mitad de la reacción por 2 y la sumamos a la primera:
  3. Cancele los electrones en ambos lados y agregue iones NO 3 {-}. H{+} con NO 3 {-} forma HNO 3 y Cu{2+} con NO 3 {-} forma Cu(NO 3 ) 3 :

Practica lo aprendido:

Herramientas químicas relacionadas:


ecuaciones químicas ajustadas hoy
Deje su comentario acerca de su experiencia utlizando el balanceador de ecuaciones quìmicas.
Menú Ajuste Masa molar Leyes de los gases Unidades Herramientas de Química Tabla periódica Foro de Química Simetría Constantes Contribuye Contáctanos
¿Cómo citar?