D5h Grupo Puntual
no abeliano, 8(12) representaciones irreduciblesLos subgrupos del grupo puntual D5h: Cs, C2, C5, D5, C2v, C5v, C5h
Tabla de caracteres para el grupo puntual D5h
E | 2C5 | 2(C5)2 | 5C'2 | σh | 2S5 | 2(S5)3 | 5σv | linear, rotations | quadratic | |
---|---|---|---|---|---|---|---|---|---|---|
A'1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | x2+y2, z2 | |
A'2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | Rz | |
E'1 | 2 | 2cos(2π/5) | 2cos(4π/5) | 0 | 2 | 2cos(2π/5) | 2cos(4π/5) | 0 | (x, y) | |
E'2 | 2 | 2cos(4π/5) | 2cos(2π/5) | 0 | 2 | 2cos(4π/5) | 2cos(2π/5) | 0 | (x2-y2, xy) | |
A''1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | ||
A''2 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | z | |
E''1 | 2 | 2cos(2π/5) | 2cos(4π/5) | 0 | -2 | -2cos(2π/5) | -2cos(4π/5) | 0 | (Rx, Ry) | (xz, yz) |
E''2 | 2 | 2cos(4π/5) | 2cos(2π/5) | 0 | -2 | -2cos(4π/5) | -2cos(2π/5) | 0 |
Tabla de productos para el grupo puntual D5h
A'1 | A'2 | E'1 | E'2 | A''1 | A''2 | E''1 | E''2 | |
---|---|---|---|---|---|---|---|---|
A'1 | A'1 | A'2 | E'1 | E'2 | A''1 | A''2 | E''1 | E''2 |
A'2 | A'2 | A'1 | E'1 | E'2 | A''2 | A''1 | E''1 | E''2 |
E'1 | E'1 | E'1 | A'1+A'2+E'2 | E'1+E'2 | E''1 | E''1 | A''1+A''2+E''2 | E''1+E''2 |
E'2 | E'2 | E'2 | E'1+E'2 | A'1+A'2+E'1 | E''2 | E''2 | E''1+E''2 | A''1+A''2+E''1 |
A''1 | A''1 | A''2 | E''1 | E''2 | A'1 | A'2 | E'1 | E'2 |
A''2 | A''2 | A''1 | E''1 | E''2 | A'2 | A'1 | E'1 | E'2 |
E''1 | E''1 | E''1 | A''1+A''2+E''2 | E''1+E''2 | E'1 | E'1 | A'1+A'2+E'2 | E'1+E'2 |
E''2 | E''2 | E''2 | E''1+E''2 | A''1+A''2+E''1 | E'2 | E'2 | E'1+E'2 | A'1+A'2+E'1 |
C1 | Cs | Ci | ||
C2 | C3 | C4 | C5 | C6 |
C2v | C3v | C4v | C5v | C6v |
C2h | C3h | C4h | C5h | C6h |
D2 | D3 | D4 | D5 | D6 |
D2h | D3h | D4h | D5h | D6h |
D2d | D3d | D4d | D5d | D6d |
S4 | S6 | S8 | S10 | |
Td | Oh | Ih | ||
C∞v | D∞h |
Deje su comentario acerca de su experiencia utlizando el balanceador de ecuaciones quìmicas.